

This PowerPoint file is a supplement to the video presentation. Some of the educational content of this program is not available solely through the PowerPoint file. Participants should use all materials to enhance the value of this continuing education program.

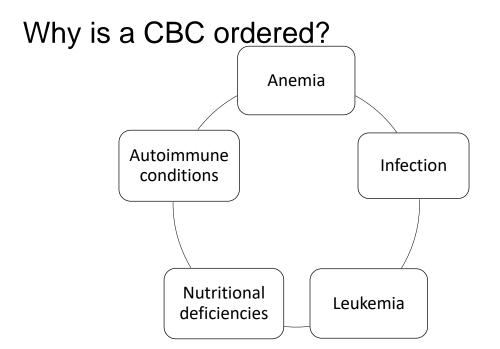
Interpreting a Complete Blood Count

Stephanie B. Cochrane, MS, MLS(ASCP) Lecturer, Medical Laboratory Science Program Rutgers University Newark, New Jersey

Learning Goals

- After this course, the learner will be able to:
 - State and describe the components of a complete blood count
 - Calculate the Red Blood Cell (RBC) indices and correlate with peripheral blood smear
 - Apply a systematic approach to summarize the complete blood count

Components of the Complete Blood Count

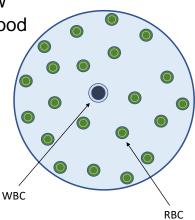

- White Blood Cell (WBC) count
- Red Blood Cell (RBC) count
- Hemoglobin (HGB)
- Hematocrit (HCT)
- RBC Indices
 - Mean Cell Volume (MCV)
 - Mean Cell Hemoglobin (MCH)
 - Mean Cell Hemoglobin Concentration (MCHC)
- Red Cell Distribution Width (RDW)
- Platelet Count and Mean Platelet Volume (MPV)

The Complete Blood Count (CBC)

White Blood Cell Parameters

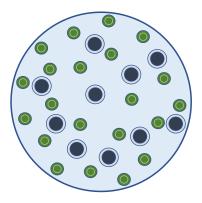
Red Blood Cell Parameters

Platelet Parameters


WBC Parameters

Total WBC Count WBC Differential

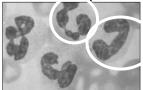
White Blood Cell (WBC) Count


• Leukocytopenia, WBC = $< 4.5 \times 10^{9}/L$

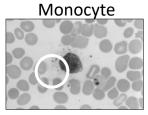
- · Decreased production in the bone marrow
- · Increased destruction in the peripheral blood
- Sepsis
- Chemotherapy
- Aplastic anemia

White Blood Cell (WBC) Count

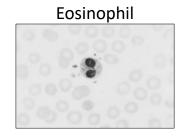
- Leukocytosis, WBC = $> 11.5 \times 10^{9}/L$
 - Infections
 - Stress
 - Some leukemias
 - Trauma
 - · Certain medications or chemicals

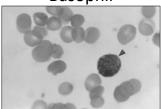

WBC Differential

Relative vs. Absolute


Amount of a cell type in	% Relative	WBC Subtype	# Absolute	The 'actual' number of the particular cell
relation to	71.1	Neutrophil	8.5	per liter of blood
other blood	15.9	Lymphocyte	1.9	
components	3.8	Monocyte	0.5	Sum equals the total
Totals 100%	0.5	Eosinophil	0.1	WBC Count
Totals 100%	8.7	Basophil	1.1	

WBC Subtypes

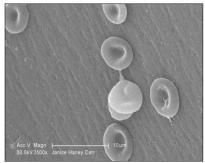

Neutrophil



Lymphocyte

Basophil

RBC Parameters


RBC Count, HGB, and HCT RBC Indices Red Blood Cell Distribution Width

RBC Parameters

- The CBC tells us:
 - The number of RBCs
 - The amount of hemoglobin present
 - The portion of blood that consists of RBCs hematocrit
 - Information on the size and hemoglobin content of RBCs – RBC Indices
 - If there is any variation in size within the RBC population – RDW

Red Blood Cells, RBC = $4.00 - 6.00 \times 10^{12}$ /L

- · Life span of 120 days
- Contain hemoglobin
- Microscopic:
 - Bi-concave discs
 - 6 8 microns in size
 - Reddish-pink color, lacking a nucleus

Hemoglobin and Hematocrit (H&H)

Hemoglobin

Found in all RBCs – iron containing protein

Enables RBCs to bind oxygen

One hemoglobin molecule can carry up to four

O₂ molecules

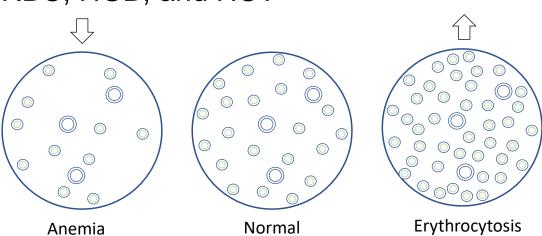
Reference Range:

Female: 12.0 – 15.0 g/dL

Male: 14.0 - 18.0 g/dL

Hematocrit

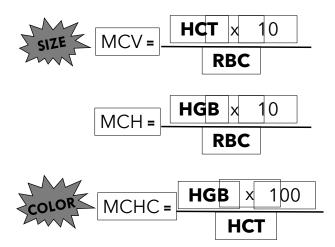
Determines the ratio of RBCs to the total volume blood


Expressed as a percentage

Reference Range:

Female: 35 – 49%

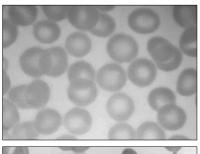
Male: 40 - 54%

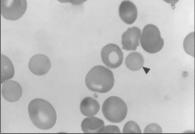

RBC, HGB, and HCT

RBC Indices

- Includes the following parameters:
 - Mean Cell Volume (MCV)
 - Mean Cell Hemoglobin (MCH)
 - Mean Cell Hemoglobin Concentration (MCHC)
- Provides information on the size and hemoglobin content of RBCs (Useful in classifying anemias)
- · Calculated using the RBC, HGB, and HCT
- · Correlate with peripheral blood smear findings

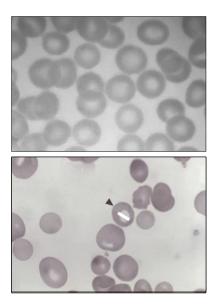
Calculating RBC Indices

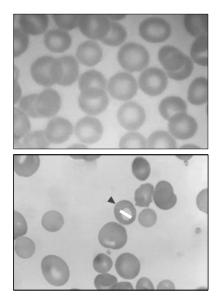

Reference Range: 80 – 100 fL


Reference Range: 28 – 32 pg

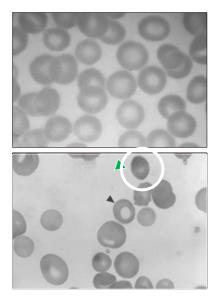
Reference Range: 32 – 36 g/dL

MCV < 80 fL

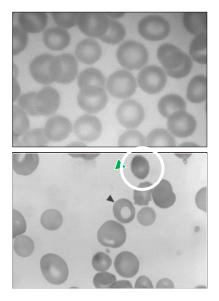

- Microcytes
 - Iron Deficiency Anemia (IDA)
 - Anemia of Chronic Disease (ACD)
 - Sideroblastic Anemia / Lead Poisoning
 - Thalassemia
 - Hgb E Disease and trait


MCV > 100 fL

- Macrocytes
 - Vitamin B12 Deficiency
 - Folate Deficiency
 - Reticulocytosis
 - Chronic Liver Disease
 - Alcoholism
 - Aplastic Anemia


MCHC < 30 g/dL

- Hypochromia
 - Increased central pallor 1/3 cell diameter
 - Defective hemoglobin production
 - Related diseases/conditions
 - IDA
 - ACD
 - Thalassemia


MCHC > 36 - 38 g/dL

- Hyperchromia
 - Hereditary Spherocytosis
 - Autoimmune hemolytic anemia
 - RBC agglutination

MCHC > 36 - 38 g/dL

- Hyperchromia
 - Hereditary Spherocytosis
 - Autoimmune hemolytic anemia
 - RBC agglutination
 - Hyperlipidemia optical interference on automated analyzers

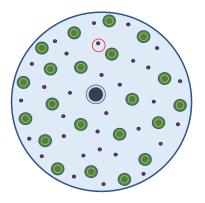
Normal MCV

- If anemia is present:
 - Hemolytic Anemia
 - Membrane Defects
 - Enzyme Deficiencies
 - Hemoglobinopathies
 - Chronic Kidney Disease
 - Immune and Non-immune causes

Red Blood Cell Distribution Width (RDW)

- Used to assess the variation in red blood cell size
- Reference Range: 11.5 14.5%
- \uparrow RDW = Anisocytosis increase variation in the size of RBCs
 - Examples:
 - Normocytes and Microcytes
 - Normocytes and Macrocytes
 - Normocytes, Microcytes, and Macrocytes
- Determined by evaluating the RBC histogram

PLT Parameters


Platelet Count Mean Platelet Volume (MPV)

Platelet Count

- Thrombocytopenia, $PLT = < 150 \times 10^9 / L$
 - Decreased production in the bone marrow
 - Dehydration and Sepsis
 - Hematologic malignancies
 - · Increased destruction in the peripheral blood
 - Microangiopathic anemias (i.e., Disseminated Intravascular Coagulation)
 - Lupus
 - Hypersplenism

Platelet Count

- Thrombocytosis, $PLT = > 450 \times 10^9 / L$
 - Hematologic malignancies
 - Essential Thrombocythemia (ET)
 - Infections or Inflammation
 - Post-splenectomy
 - Iron Deficiency Anemia

Mean Platelet Volume (MPV)

- Measures the average size of platelets
- Reference range: approximately 8 12 fL
 - Elevated MPV
 - Bone marrow compensation may result in giant platelets
 - Platelet consumption disorders (i.e., Idiopathic Thrombocytopenia)

Interpreting CBCs

Let's Practice!

Applying a Systematic Approach

WBC Parameters

- Examine the WBC count:
 - Is it normal?
 - Is leukocytopenia or leukocytosis present?

RBC Parameters

- Examine the RBC, HGB, HCT
 - Is anemia present?
- Examine the RBC Indices
 - Assess the cell size and Hgb concentration
- Examine the RDW
 Is anisocytosis present?

Platelet Parameters

- Examine the PLT count:
 - Is it normal?
 - Is thrombocytopenia or thrombocytosis present?
- Examine the MPV
 - Assess platelet size

Applying a Systematic Approach

White Blood Cell Parameters

Examine the WBC count:

Is it normal?

Is leukocytopenia or

leukocytosis present?

Applying a Systematic Approach

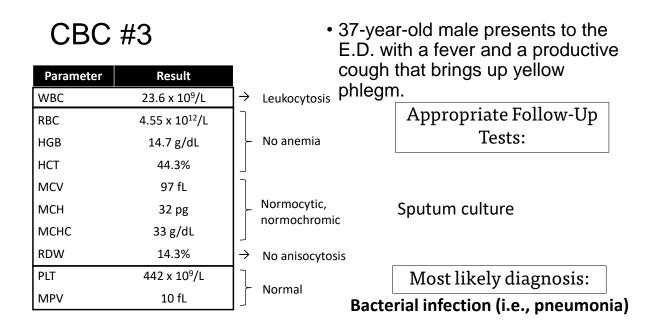
Red Blood Cell Parameters

Examine the RBC, HGB, HCT Is anemia present? Examine the RBC Indices Assess the cell size and Hgb concentration Examine the RDW Is anisocytosis present?

Applying a Systematic Approach

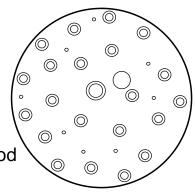
Platelet Parameters

Examine the PLT count: Is it normal? Is thrombocytopenia or thrombocytosis present? Examine the MPV Assess platelet size


CBC #1

CBC #1		 Case History: 63-year-old male presenting with numbress and 		
Parameter	Result	tingling of hands and feet and occasional shortness of breath.		
WBC	6.7 x 10 ⁹ /L]→ Normal		
RBC	2.91 x 10 ¹² /L	ר [Appropriate Follow-Up	
HGB	11.7 g/dL		Tests:	
нст	34.8%		Initial: Vitamin studies	
MCV	↓ 54.6% 120 fL		(Vitamin B ₁₂ and Folate	
мсн	40.2 pg	- Macrocytic,	levels) Secondary: Homocysteine	
мснс	33.6 g/dL	Normochromic	and Methylmalonic acid	
RDW	12.4%	A No anisocytosis	,	
PLT	185 x 10 ⁹ /L			
MPV	10 fL	Normal	Most likely diagnosis:	
L			Vitamin B ₁₂ deficiency	

CBC #2


Parameter	Result	complains of fatigue and shortness		
WBC	8.8 x 10 ⁹ /L	→ Normal of breath.		
RBC	4.03 x 10 ¹² /L	Γ	Appropriate Follow-Up	
HGB	6.8 g/dL	- Anemia	Tests:	
НСТ	23.9%		Iron Studies:	
MCV	59 fL	ſ	 Serum iron levels 	
МСН	16.9 pg	_ Microcytic,	• Ferritin	
МСНС	28.6 g/dL	hypochromic	• TIBC	
RDW	19.8%	→ Anisocytosis	Transferrin	
PLT	354 x 10 ⁹ /L		Most likely diagnosis:	
MPV	8.9 fL	Normal	Iron deficiency anemia	

• 50-year-old female recently diagnosed with colon cancer

Platelet Count

- Thrombocytopenia, $PLT = < 150 \times 10^9 / L$
 - · Decreased production in the bone marrow
 - Dehydration and Sepsis
 - Hematologic malignancies
 - Increased destruction in the peripheral blood
 - Microangiopathic anemias
 - (i.e., Disseminated Intravascular Coagulation)
 - Lupus
 - Hypersplenism

The Complete Blood Count (CBC)

White Blood Cell Parameters

WBC Count, WBC Differential

Cultures, Tests For Viruses, Tests For Inflammation

The Complete Blood Count (CBC)

Red Blood Cell Parameters

RBC Count, HGB, HCT, RBC Indices

Reticulocyte, Count Iron Studies, Vitamin Studies, Hemoglobin Evaluation

The Complete Blood Count (CBC)

Platelet Parameters

Platelet Count, MPV

Platelet Function Tests, Coagulation Studies, HIT Antibody Tests

Summary

- The CBC provides valuable information to the physician that aids in patient diagnosis, treatment, and monitoring.
- Results from a CBC allow for the ordering of appropriate followup tests to further aid in patient diagnosis
- CBC interpretation should apply a systematic approach and in context with the patient's clinical presentation

Resources

- Doig, K., & Zhang, B. (2017) A methodical approach to interpreting the red blood cell parameters of the complete blood count. ASCLS Clinical Laboratory Science Journal, 30(3) 173-185. <u>https://doi.org/10.29074/ascls.30.3.173</u>
- Elsevier Patient Education. (2021, June 2). Complete Blood Count. <u>https://elsevier.health/en-US/preview/complete-blood-count</u>
- Jiang, F. (2021, September 28). The Meaning of Complete Blood Count (CBC) Abbreviations. GoodRx Health. <u>https://www.goodrx.com/health-topic/diagnostics/cbc-medical-abbreviations</u>
- Ahmed, M. M., Ghauri, S. K., Javaeed, A., Rafique, N., Hussain, W., & Khan, N. (2020). Trends of utilization of Complete Blood Count parameters for patient management among doctors in Azad Kashmir. Pakistan Journal of Medical Sciences, 36(5), 999–1004. <u>https://doi.org/10.12669/pjms.36.5.1885</u>

References

- Rodak's Hematology: Clinical Principles and Applications, 5th ed. (2019). Keohane, Smith, Walenga. Chapter 5, pgs. 42-64, Chapter 16 pgs. 235-25.
- Complete Blood Count (CBC). Lab Tests Online. Retrieved from: https://labtestsonline.org/tests/complete-blood-count-cbc
- SUCCESS! In Clinical Laboratory Science, 4th ed. (2009). Ciulla, A., Lehman, D. Chapter 2, pg. 283-284

Interpreting a Complete Blood Count Stephanie B. Cochrane, MS, MLS(ASCP)

If you have any questions about the program you have just watched, you may contact us at:

(800) 424-4888 or Health.eduCSRequests@ttuhsc.edu Direct your inquiries to Customer Service. Be sure to include the program title and speaker. This information is intended for the private use of Health.edu subscribers. Any redistribution of this information without the express written permission of Health.edu is prohibited. www.ttuhsc.edu/health.edu Copyright 2023

This information is intended for the private use of Health.edu subscribers. Any redistribution of this information without the express written permission of Health.edu is prohibited. 800-424-4888|www.ttuhsc.edu/health.edu

Copyright 2023